Status: Tritium Plasma Experiment at the INL Safety and Tritium Applied Research (STAR) Facility

R. A. Anderl*, J. P. Sharpe*, R.D. Tillotson* (*INL)
R.A. Causey+, C.L. Kunz+,(+SNL)

Session 5 Presentation at Plasma-Facing Components Meeting May 9-11, 2005 Princeton, NJ

Outline

- Re-assembly/installation activities
- System integration/testing activities
- Plans for initial plasma operation and experiments

Tritium Plasma Experiment (TPE)

Steady-state plasma generator

Tritium and Be compatible

Plasma density: 10¹⁹ /m³

Plasma ionization fraction: 1-10%

Ion flux: 10^{19} - $3x10^{22}$ /m²

Ion energy: 15-200 eV

Target temperature: 100-800°C

TPE is located in the STAR Facility

STAR Floor-plan Layout Glovebox **Chemical reactivity** Exhaust to MTR Stack Exhaust to MTR Stack **TCS Tritium** experiment Tritium HVAC Supply Air Stack monitor SAS Hood Molten Salt D ion implantation Pit Area HVAC Purification system 26-ft deep B 로 experiment HEPA Blower Glovebox exhaust Hood manifold PC Glovebox Tritium Plasma Exp Flibe preparation 16 ft purification & testing TRA-666A PC PC Rm-102 TRA-666A TRA-666 Rm 103 Table PS Rm-101 HE __ 12 ft-Console BET TRA-666 TRA-666A Flibe-triti High Bay Rm-101 Flibe Salt experimen 2Lif-BeF 25.5 ft 21 ft Temp. Office/ Future Experiments 48 ft Flibe-corrosion TRA-666 15,000 Ci tritium limit Rm-102 experiment Segregation of operations/ventilation Once-through room ventilation Pit Area 10-ft deep Gloveboxes and hoods Cran Electrical MCC **Tritium cleanup system (TCS)** 10 ft Tritium storage and assay system (SAS) 15.3 ft 14.7 ft 40 ft

TPE Re-assembly, Setup and Operation

- Re-assemble TPE in HEPA-filtered ventilated room
- Install utility services for TPE system in PermaCon room
 - Electrical, water, gas, effluent control, ³H monitoring
- Interface TPE system to STAR utility services
 - Electrical, coolant systems, glovebox ventilation, TCS
- Check TPE components, update and test
 - Vacuum pumps, pneumatic valves/lines, control instrumentation, water lines, plasma source, power supplies, heaters, gas flow cont.
- TPE system integration and testing
 - Establish system vacuum; operate control instrumentation, power supplies, coolant and gas systems, and plasma source
 - Initiate plasma operation with hydrogen
- Initiate TPE experiments with hydrogen/deuterium plasmas
- Prepare for operation with tritium
 - Glovebox testing, purge gas control, TCS interface, U-bed installation, ³H source
- Prepare ISMS documentation and procedures

Idaho National Laboratory

Green: completed, blue: partial comp., red: to do

TPE is in a HEPA-filtered ventilated room

PermaCon enclosure housing TPE and ancillary equipment

Auxilliary blower and HEPA filter for room ventilation.

Utility services for TPE

Distribution of utility services inside the PermaCon

Plans and schedule for TPE set up and operation

- Complete TPE interface to utility services (May-05)
 - Component coolant system
- Complete testing of TPE components (May/June-05)
 - Pneumatic & water lines, coolant systems, control instrumentation, power supplies, plasma source, heaters, gas flow controllers
- Complete system integration & testing (June/July-05)
 - Establish system vacuum, integrated operation of all systems, initiate plasma operation with H
- Initiate TPE experiments: H or D plasmas (July-05)
- Complete preparation for ³H operation (Sept.-05)
 - Glovebox testing, TCS interface, U-bed install
- Complete ISMS documentation and procedures for initial tests (June/July-05)

